The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

نویسندگان

  • Mohabir Ramjeesingh
  • Francisca Ugwu
  • Fiona L L Stratford
  • Ling-Jun Huan
  • Canhui Li
  • Christine E Bear
چکیده

The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intrinsic Adenylate Kinase Activity Regulates Gating of the ABC Transporter CFTR

Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require ...

متن کامل

Demonstration of Phosphoryl Group Transfer Indicates That the ATP-binding Cassette (ABC) Transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Exhibits Adenylate Kinase Activity*

Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane-spanning adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter. ABC transporters and other nuclear and cytoplasmic ABC proteins have ATPase activity that is coupled to their biological function. Recent studies with CFTR and two nonmembrane-bound ABC proteins, the DNA repair enzyme Rad50 and a structural mainte...

متن کامل

Activation of G551D CFTR channel with MPB-91: regulation by ATPase activity and phosphorylation.

We have designed and synthesized benzo[c]quinolizinium derivatives and evaluated their effects on the activity of G551D cystic fibrosis transmembrane conductance regulator (CFTR) expressed in Chinese hamster ovary and Fisher rat thyroid cells. We demonstrated, using iodide efflux, whole cell patch clamp, and short-circuit recordings, that 5-butyl-6-hydroxy-10-chlorobenzo[c]quinolizinium chlorid...

متن کامل

Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an ...

متن کامل

Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein.

In the presence of ATP, genistein, like the ATP analogue adenosine 5'-[beta,gamma-imido]triphosphate (pp[NH]pA), increases cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents by prolonging open times. As pp[NH]pA is thought to increase CFTR currents by interfering with ATP hydrolysis at the second nucleotide-binding fold (NBF-2), the present study was undertaken to inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 412 2  شماره 

صفحات  -

تاریخ انتشار 2008